Injective Hulls of Quantale-Enriched Multicategories

نویسندگان

چکیده

In this communication we generalize some recent results of Rump to categories enriched in a commutative quantale V. Using these results, show that every quantale-enriched multicategory admits an injective hull. Finally, expose connection between the Isbell adjunction and construction hulls for topological spaces made by Banaschewski 1973.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation in quantale-enriched categories

Our work is a foundational study of the notion of approximation inQ-categories and in (U,Q)-categories, for a quantale Q and the ultrafilter monad U. We introduce auxiliary, approximating and Scott-continuous distributors, the way-below distributor, and continuity of Qand (U,Q)-categories. We fully characterize continuous Q-categories (resp. (U,Q)-categories) among all cocomplete Q-categories (...

متن کامل

Injective Hulls of Partially Ordered Monoids

We find the injective hulls of partially ordered monoids in the category whose objects are po-monoids and submultiplicative order-preserving functions. These injective hulls are with respect to a special class of monics called “embeddings”. We show as well that the injective objects with respect to these embeddings are precisely the quantales.

متن کامل

Convergence and quantale-enriched categories

Generalising Nachbin's theory of ``topology and order'', in this paper we   continue the study of quantale-enriched categories equipped with a compact   Hausdorff topology. We compare these $V$-categorical compact Hausdorff spaces   with ultrafilter-quantale-enriched categories, and show that the presence of a   compact Hausdorff topology guarantees Cauchy completeness and (suitably   defined) ...

متن کامل

Injective Hulls of C* Algebras. Ii

Proof. The idempotents correspond to the Borel sets modulo sets of first category. Since, in addition, the idempotents generate B(X), B(X) is an AW* and hence an injective algebra. The natural map U of C(X) into B(X) induced by the inclusion map is clearly a homomorphism. It is one-one since continuous functions which are not identically equal must differ on a set of second category. To complet...

متن کامل

Modules which are invariant under monomorphisms of their injective hulls

In this paper certain injectivity conditions in terms of extensions of monomorphisms are considered. In particular, it is proved that a ring R is a quasi-Frobenius ring if and only if every monomorphism from any essential right ideal of RR into R (N) R can be extended to RR. Also, known results on pseudo-injective modules are extended. Dinh raised the question if a pseudo-injective CS module is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Categorical Structures

سال: 2021

ISSN: ['1572-9095', '0927-2852']

DOI: https://doi.org/10.1007/s10485-021-09650-0